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Moments of vicious walkers and Mdius graph expansions
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A system of Brownian motions in one dimension all started from the origin and conditioned never to collide
with each other in a given finite time interval {0, is studied. The spatial distribution of such vicious walkers
can be described by using the repulsive eigenvalue statistics of random Hermitian matrices and it was shown
that the present vicious walker model exhibits a transition from the Gaussian unitary engéhiB)estatistics
to the Gaussian orthogonal ensem@&OE) statistics as the timegoes on from 0 tdl. In the present paper,
we characterize this GUE-to-GOE transition by presenting the graphical expansion formula for the moments of
positions of vicious walkers. In the GUE limit-0, only the ribbon graphs contribute and the problem is
reduced to the classification of orientable surfaces by genus. Following the time evolution of the vicious
walkers, however, the graphs with twisted ribbons, callecbid® graphs, increase their contribution to our
expansion formula, and we have to deal with the topology of nonorientable surfaces. Application of the recent
exact result of dynamical correlation functions yields closed expressions for the coefficients in ibhes Mo
expansion using the Stirling numbers of the first kind.
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I. INTRODUCTION it is an example of entropy-origin effective force. Moreover,
the following setting was considered in our vicious walis:

The statistics of a set of one-dimensional random walkgven after taking the continuum limit, still we let the time
conditioned never to collide a given time interval, say, interval, in which the noncolliding condition is imposed, be
has its own importance in statistical physics, since, if we sefinite T<e, and(ii) all the Brownian particles are assumed
T—oo, it realizes the one-dimensional Fermi statisfitg  to start from an origin and the time interval of noncolliding is
and with T<e it is used to analyze the models for wetting (0,T].
and melting phenomeri&]. We will refer to such noncollid- In this setting, the process is temporally inhomogeneous.
ing random walks and the continuum counterpart, noncollid-At the very early stage<T the repulsive interaction should
ing Brownian motions, simply agcious walksollowing the  be strong, since the Brownian motions will be restricted so
terminology used by Fishé@]. For the pioneering work on that they will not collide for a long time period up to tine
vicious walker models, see Ref8—7]. A generic setting of in the future. As the time& goes on, the strength of the re-
vicious walk problems is discussed in RE8)]. Recently the pulsion is decreasing as is the remaining time untiland
interest on the vicious walks in mathematical physics is reattains its minimum at the final time=T, at which there
newed and growing very rapidly, for close relationships ofis no more restriction of motion in the futute>T. It was
the vicious walk problem with the study of ensembles ofDyson’s idea that such systems of Brownian motions with
Young tableaux and the symmetric functiof®-11], the long-ranged repulsion could have the equilibrium states,
theories of orthogonal polynomials and random matricesvhich can be described by the distribution functions of the
[12,13, and some topics of representation theory and probeigenvalues of random matrices in the ensembles appropri-
ability theory[14—16 have been clarified. ately specified by the symmetry of the systgt8]. The pre-

In an earlier pap€efl7], the continuum limit of noncollid-  vious paper{17] showed that the spatial distribution of vi-
ing random walks on a lattice was taken by letting the tem-<ious walkers at<T realizes the eigenvalue statistics of the
poral and spatial unitdt,Ax go to zero with the relation Gaussian unitary ensembl&UE), one att=T does that of
Atx(Ax)? and a system of noncolliding Brownian motions the Gaussian orthogonal ensemb®&0E), and the GUE-to-
was derived. Since each random walk tends to be a Brownia@OE transition is observed in the intermediate time, which is
motion in thisdiffusion scaling limit such a construction of equivalent to the transition studied in the two-matrix model
noncolliding Brownian motion is plausible, and indeed math-by Pandey and Mehtl9,20.
ematical rigor can be established as a functional central limit In the present paper, we will characterize this transition in
theorem of vicious walk§16]. The important fact is that the distribution by calculating the moments of the position$Nof
repulsive interaction among the obtained Brownian particlegarticles as functions of time
is no longer contact interaction as in the original vicious
random walks on a lattice but is long ranged. The origin of N
this long-ranged interaction is the restriction of allowed con- MN,T(t,k)=< E xfk> , k=123..., (&N
figurations by the noncolliding condition, so that we can say =1 t

where x; denotes the position ofth vicious walker and

*Email address: katori@phys.chuo-u.ac.jp () the average at timée (0,T]. In addition to such an
"Email address: komatuda@phys.chuo-u.ac.jp interest of statistical physics, we can put emphasis that our
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present study possesses another importance as an interestprgcise definition of the moments which we will study.
application of the graphical expansion theory. In high energyGraphical representations are demonstrated in Sec. Ill. An
physics, graphical expansions for the matrix models ofapplication of the result of Ref32] is given in Sec. IV to
SU(N) gauge theory were studied usirigbon graphsrep-  give the expression for the coefficients of expansion and
resenting propagators and it was shown that the dominargome concluding remarks are given in Sec. V. Appendixes A
graphs for largeN are the planar ones and the leading cor-and B are prepared to derive the expression of the density
rections come from the graphs embedded in a torus, whicfunction used in Sec. IV and theN/expansions of the one-
are depressed by a factorNE/ with respect to the planar point Green function discussed in Sec. V, respectively.
graphg21,22. On the other hand, it was clarified that in the
graphical expansion of SO gauge theory the leading cor-
rections only are depressed by a factdd Ior large N with
respect to the dominant planar graphs, in which propagators We study a continuum model of vicious walks, the non-
can be represented liwisted ribbong23,24. In the gauge colliding Brownian motions in the time interval (0}, con-
theory, the presence of non-Gaussian interaction terms aftructed in Refs[16,17] as the diffusion scaling limit of
cubic or higher power is crucial and it leadstt@ngulations  vicious random walks on a lattice. First we briefly review our
of random surfacesAlthough the Gaussian matrix models previous results. The configuration space of the present
associated with the present vicious walker model are not revicious walkers isRN={x=(x;,X,, . .. Xn) € RN;x;<x,
lated to the triangulation problem of random surfaces and<. .. <xy}, whereR is a set of all real numbers. The prob-
only give purely enumerative problems of surfaces, theability density of vicious walkers at timee (0,T] with the

proper structures of largé expansions in SWN) and SON)  initial condition that all walkers start from the origid is
gauge theories are also found in the GUE and GOE modelgenoted bypn 7(t,X). It was given as

respectively. We can show that, if—o° in our vicious

walker model, the moments of the walker positigi$ can ,

be calculated by the graphical expansion method of the GUE pn1(t,x)=Ce XT2h () M(T—t,%), 2
using the ribbon graphs and the results are given in the form

of power series in the inverse of teguareof matrix sizeN,

II. VICIOUS WALKS AND THE MATRIX MODEL

with C=2"N2TNN-DA NN 1(j2) for xeRY,
where I'(z) is the gamma functionhiy(x) =111<j<<n(X¢

1 1) ~x;) and
M gue(k) <N 1 > eq(K)| — | - !
g=0 N2
= —(xj=y¢)/2s
Here the coefficientg 4(k) are the numbers obrientable Nu(s,x) Rﬁdylg?iN( 27TSe b )

surfaces of genus grade from X-gon by some specified
procedurg 25] (see also Ref.26] and Sec. 5.5 in Ref20]).
On the other hand, for the GOE we have to take into accoum8y using the Harish-Chandrdtzykson-Zubey integral for-
the nonorientable surfaceas well as the orientable ones and mula [33 35 we will see thatpN T(t X) is proport|0na| to
the expansion is in the form of power series ifN1/In other  the integral

words, in order to generate necessary surfaces, we need to

use twisted ribbons, whose type of graphs is now called of

Mobius graphs[27,28. For moments(1) of our vicious hN(x)Zf duf dAexd —trH(UTXU,A)], ®)
walkers, we will perform the Mbius graph expansion in the

present paper. Now the weights of the graphs are depending

on the timet; in the limit t—0 all the weights on the twisted With

ribbons are zero, but they are growing as tingoes on, and

at t=T twisted ribbons are equally weighted as untwisted T T T2

ones. This gives another characterization of the temporally H(H,A)= 20(T—1) Hz_t(T—t) HA+ — A?,
inhomogeneity of the process and the GUE-to-GOE transi- 2t5(T—1)
tion.

Quite recently Nagao, Tanemura, and one of the presenthereX is the NXN diagonal matrix withX;,=x;d;,, and
authors applied the method of skew orthogonal polynomialghe integralsfdU and fdA are taken over the groups bf
and quaternion determinants developed for the multimatrix< N unitary matricesU} and real symmetric matric§#\},
models[29-31] to the vicious walk problem and derived the respectively. The proportional coefficient is determined so
quaternion determinantal expressions for dynamical correlathat the probability density is normalized. On the other hand,
tion functions[32]. Using this result, we will present an ex- the integral oveA in Eq. (3) can be regarded as the convo-
pression of the coefficients in our expansion of momentdution of the Gaussian distribution of complex Hermitian ma-
using the Stirling number of the first kind. tricesH with variancet(1—t/T) and that of real symmetric

The paper is organized as follows. In Sec. Il, we brieflymatricesA with variancet?/ T, and thus we have the expres-
review the previous results reported in Réf7] and give the  sion
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5 . Since dHxdU X hy(x)2dx, if x=(Xq, ... Xxy) are the ei-
pw,7(tX)<hy(X) f dUpuy 7(t,UXU), (4 genvalues oH anddx=1",dx; (e.g., see Ref[20]), and
_ SN x2K=trH?* for H=U'XU with any unitary matrixU,
with Eq. (8) with Eq. (5) becomes
(H)?  (Hjp? My 1(t,k) = (trHZ), 9
MN,T(t,H)“eXF{ —% { 2t T ata—um)| | 5

where(f)= fdHfuy t(t,H) for functionsf of the elements
where and in the following we use the abbreviatiaRsand  of H with

Z' for the real and the imaginary part of the complex number . .
z, respectively, i.e.z=z"+iz' for ze C with i=y—1. Re- e~ (H)Z2t e (H1t

N
k that, if (t,H)= - -
mark that, if we set MN,T jl:[l ot 1Sj1;[€$N \/ﬁ

S ©®) L e
1=j<t=N \mt(1-tT)

and a®=1-t/T, cN,uN,T(t,cH) is equal to the probability Note that

density of the two-matrix model of Pandey and Mehta with

the parametetr [19,20. Corresponding to changing the pa-

rameter« from 1 to O in the Pandey-Mehta two-matrix tr(H®)= > H  H . ---H_ . H_ .
model, a GUE-to-GOE transition occurs in the time develop- [T P PR Jok-1Ja” Jauds
ment of particle distribution in our vicious walks.

Now we define the quantity, which we will study in the \yhere the sum is taken over &P* combinations of indices
present paper; the moment of particle positions in the vicioug, i j o, and thaH = H_R€_HH !e with the Hermitian
walks. Since distribution(2) of x is symmetric about the "% "R R 1 1) ] % ;
origin 0, all of the odd moments vanish. The even moment con.dmonH(j— H-” Hi= zH-j{’ the integrand " in Eq.

f.’ ol ) S(9) is a polynomial of theN“-independent random variables
are defined and denoted as follows: {HY;1<j<€<N}U{H},;1<j<¢<N}. Since probability
density(10) is a product of independent Gaussian integration

N
kernels, we can apply the Wick formula with the variances
Mpr(t,k)= < > xfk> - f WO oyt (D) PPy
. =

=1 <

R\2\ _ t Ryl \ _

for k=1,2,.... ((Hjp) >—§(1+5j€)a (Hj¢Hj» =0,

I1l. GRAPHICAL EXPANSIONS

| UL
A. The Wick formula ((Hjp)%)= — (1=, (13)
First we naotice that Eq4) is invariant under any permu- _ .
tation ofx;,X,, . .. Xy. Then Eq.(7) is written as for Isj=<{=<N, whered;, is Kronecker's delta.
We can readily prove that Eq11) is equivalent to
1 N
MN,T(t,k)oc—f dth(x)Zf dU>, xHuy 1(t,UTXU). c?
NI J RN =1 ] ® <Hj€Hmn>:7(5jn5€m+ 75jm5en), (12

) ) . wherec is given by Eq.(6) and
Next we introduce the integration measure for fkexN

complex Hermitian matrices, t
Yot (13
dH=[] dH} dHj,. _ _
1=<j<¢=N 1=<j<e=N The Wick formula for Eq.(9) is thus
MN'T(t'k):jlvjz,Z. 2k weék:R (Hi iy sy mrinere ! Hisyiny e M sy e s 1o aMinaginag 1
(14
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with the identification . 1 =j1, where the first sum is taken

over allN?¢ combinations of indice§, ,j,, . . . ,jok, and the Myr(t,2)= > {(H;i,Hii ) (Hi, Higi )
second one over the set of permutati®gof {1,2, ..., Xk} J1l2:03:0a
with the restriction +(Hjj,Hig (HiiHii 0+ (HpjH )
R: m(1H)<#(3)<---<mw(2k—1), X(Hi  Hi )}
Jolg  Tlgla/ I

m(2j—-1)<m(2]), 1l=sj=<k.
. v — .
The total number of the terms in the second summation i¥Vh'Ch has (%2. 1) 3 terms in _the _summand. of
(2k—1)!1 J1, - - - ,ja- Substitution of Eq(12) and binomial expansion
give the 3x2?=12 terms in the form

B. An example: The fourth moment
. . . . 1
In this section, by performing calculation of the fourth 2

moment My 1(t,2)=(trH*), we will demonstrate how to
obtain graphical expansions from the Wick form(d4) with
variance (12). We start from the Wick formula for

My 1(t,2), with

2
L,,

2
MN,T(t.2)=(7) P

1

121291304

6 51'4]'1’)/,

1291301

S

j4i4’

j1.J2.03.0a

o & j j
J1:2:13:]a vs 1s

— — 2
L3_ 2 5]1]25j2j35j3j15j4j4y’ L4_ E 511125121351314514117 !

i1.J2.03.0a j1.J2.03.0a

L5: 2 5j1j45j2j35j2j15j3j4’ LG: E 511145121351214513j17’

i1.2.13.i4 i1.2.03.0a

— — 2
L7_ E 5]1]'36j2j45j2j15j3j4y’ L8_ 2 511]3612]451214513117, !

i1.d2.03.0a i1.d2.03.0a

Lo= X 8,1,0,1.01,0s00s L10= 2 81,0,61,1.81,i50050, 7

L iKY .
J1.02:034)4 e J1:2.034)4

_ _ 2
Lu= 2 8,0,00,0,0,0.00.Y L1z 20 811,81,i,00,050050. 7

j1.02.03.0a 102034

Graphically, we prepare a square with four vertices la-=j,, only two indices, sayj; andj,, can be chosen to be
beledj;,j,,j3.j4 in acyclic order for each term as shown in arbitrary from{1,2, ... N}. Then the summation over all
Fig. 1 and connect the verticgg and j, by a line for each  possible choices of indices givé¥ for this term. The con-
Kronecker’s deltas; ; . We then regard these lines connect- tribution of L, is thusN?y. We list up the contributions of
ing vertices as the hems of ribbons connecting the two edgeall terms in Fig. 1, and the sum of them gives
of the square. For example, the two lines connecjifig j s
andj,«j, in the termL, are considered as the two hems of 2pem 2
a ribbon, sayr;, connecting the edgesj, andj,js of the M, 1(t,2)/(c/2)
square, while the linefz<>j, andj,—|; are as those of a =(N3+N?yx2+Ny?) X2+ N+ Nyx 2+ N25?
ribbon, sayr,, connecting ;j, andj,j,. There are two ways
to connect two distinct edges by a ribbon, by untwistingas
and by twisting as, in the above example, respectively. For
each twisted ribbon, we put a facter

Next we take the summation ovgr, . . . ,j4 in each term.
Again consider the term, for example. Under the restric- This shows that the 12 terms are classified into six equiva-
tions on indices specified by the Kronecker deltassj;  lence classedLy,Lo}, {Lo,L3,L10,L11}, {L4,L12}, {Ls},

_ N3 21 2 1
N 2+(4y+y)N+(1+2y+27)N2 . (15
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genus is related t&/(I"), E(I') =k (the number of distinct
edges; the original R sides of polygon were glued together
in pairs by ribbongy and F(I')=1 (the number of facgs
through the Euler characteristic

x(Sp)=V(I') —k+1=2-29(Sy). 17

Then the contribution from all graphs having no twisted rib-
bons is expressed as

2

C
MRI,T(tuk):(?

k

TNk L2000
F;g(k) Lory-olT|

g
: (18)

2k k2 1
_[ &) Nk -
(2) N g§=:o e9(k) N2

FIG. 1. Mdbius graphs for the fourth moment.

where 1, is the indicator;1,,=1 if the conditionw is
satisfied and 1;,=0 otherwise, and ey(k)

{Lg,L;}, and{Lg} with respect to the contribution to the = Zregolem=ovn)-k+1-2g T,

moment, and Fig. 1 implies that all graphs for the terms in an In the similar way, the graphb having twisted ribbons,
T 9- P . grapn o(I')=1, are considered to define nonorientable surfaces
equivalence class are topologically equivalent.

Sr . The genug for nonorientable surface may be defined by

the Euler characteristics §37]
C. General formula

For the general Rth momentM 1(t,k), k=1, we have x(Sr)=2-9(Sr)
(2k—=1)!" Wick couplings in formula(14), each term of
which is thek products of the variancegd,H ). By ap-
plying Eqg. (12) and expanding iny, we will have theK
=(2k—1)1'x 2% terms, My 1(t,k)/(c?2)*==%_,L,. As ok
demonstrated in the above section, a one-to-one correspon- MY T(t,k)=<c—> > 1y =1y | T NKF 179050 o)
dence is established between tefhs} and graphs, each of ’ 2) régu T
which consists of a R-gon with its edges connected Iy " K g K
ribbons to each other. For each graph correspondirig, to :(C_> Nk+12 (i) E e (Y™, (19
let ¢, be the number of twisted ribbons in tkeibbons and 2 F1\N) =y oem v
V, be the “free indices” remaining after the identification of
indices under the Kronecker delta conditions. Then the co = -
tribution from the ternL, is given byNV¢y#¢. As mentioned n\g%?ré fﬁé“;,(';)iveﬁFbeygiﬁé{‘;ﬁm’g{ﬁg c-1-g|T|. Moment
at the end of the preceding section, we consider the equiva-
lence classes of the terms having the same contribution to the My 1(t,K) =M (t,k) + MY (k). (20)
2kth moment, and let each equivalence class be represented ’ ' '

by a graphl’. We letV(I") and¢(I") be the numbers of free |t should be noted thay defined by Eq(13) is a mono-
indices and of twisted ribbons. Moreover, we denote th&gncally increasing function of and changes its value from
number of elements in the equivalence clas®y |I'|. In =0 tg 1 as the time passes from=0 to T. The above
other words/I'| is the number of ways to generate graphsformula (19) shows the fact that the contribution from™Mo
which are topologically equivalent with, using a X-gon  pjys graphs with twisted ribbons is growing in time and at
andk ribbons by gluing edges ofk2gons by ribbons. Define {—T twisted ribbons contribute with the same weights as

G(k) as the collection of all graph8l'} generated by the ntwisted ribbongthe GOE case
present procedure. Then we have

2) k IV. CALCULATION BY DENSITY FUNCTION

C
MN,Ta,k):(; (2 [TINTO 0. ag

instead of Eq(17). Then all the contribution to the moment
from such nonorientable surface graphs is

Each graphl’ having no twisted ribbonsp(I")=0, de-

fines a way of drawing a graph on an orientable surfjce puT(tXTY) =~ Ze—lx\zlth(X)SQr[hN(y)]
called amap and each map specifies the surfdge on (N1

which the graph is drawfsee, for example, Ref$26,36). o (5 -y X2(T-1)

In general, the specified orientable surface has “holes” or X det | ———
“handles” and their number is called thgenus ¢Sy). The 1<jk=N\  V2m(T—1)
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for x,ye RN, It is easy to confirm thapy t(t,x;T,y) is in- =21j!\/;. As shown in Appendix A, the general formula for
variant under any permutation of, ..., Xy and that of the dynamical correlation functions of vicious walks reported
Y1, ... YN, and Eq.(2) is equal toN! [dypy 1(t,x;T,y), if  in Refs.[32,3§ gives the expression
xe RY . Then the density function at timeis defined as

1 R |
N p(tx)= e ™Y, t{H (x/e)}?
p(tax):NJ jl;[2 dxjf dypN,T(t1X;T1y)1 (21) : :

Y 2
4+ —(x/c) -
and the Xth moment is given by 2Nflc\/;e Hy-1(x/c) (N/2—1)!
5 (N2+))!
MN,T(t,k)=f x*p(t,x)dx. (22) 2 ( D! xlc). (23

L INF2j 1)1 Y THp 2+ 1(

Let Hj(x) be thejth Hermltlan polynomial, satisfying the sypstituting Eq(23) into Eq.(22) and replacing the integral
orthogonallw fe * °H; i(XH(X)dx=h;d;,  with b variablex by y=x/c give

N—-1

My 7(t, k)/c= 2 f y2k{H (y)}ze’y dy+ Y (N/2+j)!

2N /m(N/2—1)1i=0 (N+2j+1)!

¥ f y?*H N—1(Y)Hn 2; +1(y)e’y2dy

1 K (2k)! 2
22N (N= 1)) 2 j1(2k— 21)'”H2k_2j(y){HN(y)Ve sy

—fH y ’ g Y E (N/2+])!
2k-2j(Y) Hn-1(Y)Hysa(y)e 7 dy |+ 22N [ (Nj2— 1)1 = (N+2j+1)! Y
k
(2k) 2
Z T%)'f Hok—2¢(Y)HN-1(Y)HN1 25+ 1(Y) e Y dy.
|
In the second equality, we used the Christoffel-Darboux for-and the relation
mula (see p. 193 in Ref.39]) .
(2k)!
N-1 (29)%= 2 o Ha oY),
1 . _ 2k—2j
E h, —{Hj(y)}*= m[{HN(Y)}Z =0 1 (2k=2))!
Now we apply the integration formula for the triple of Her-
—Hyn_1(Y)HNs1 (D], mitian polynomials(see p. 290 in Ref.40]):

jrerm!
(s—)!(s—4€)!(s—m)!

2s\m if j+¢+m=2s iseven

_ “Ydy=
J' Hj(y)H(Y)Hn(y)e ™ dy and s—j=0,s—¢=0, s—m=0,

0 otherwise.

Then we arrive aMy 1(t,k) = MR"T(t,k)‘l‘ Mﬁ,’T(t,k), with

c2\ k2Kt X [k N
0 _<
MNvT“"‘)‘(Z) 2(')(k—j+1

2k, (24)

Kbkt 2071(N/2+ €)IN!(2K)!

M (k)= (C—) >
N 2] & & (NI2V(N+E—K+))(k—]—€— 1)|(k—j+e+1)u|7

(29
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Here we do not repeat the explanation how to characterizeegarded as the power series of the number of walkérs

the quantityey(k) in Eq. (18) by using formula(24), and

Here we consider the largd limit. Let I\A/IN,T(t,k) be the

only mention that it is obtained as the solution of the recur-qominant term of Eq(20) in N>1. Then

rence relation
(k+1)eg(k)=(4k—2)e4(k—1)
+(k—=1)(2k—1)(2k—3)eg_1(k—2),
(26)
with the boundary conditions
1 if g=0,
#9(0)= 0 otherwise.

See Ref[25], Sec. 5.5 in Ref{20], and Ref[26] for details.
In order to express the expansion ifNifbr Eq. (25), here

we introduce the numbes(n,k) defined as the coefficients

of the expansion

n

X(X—1)- - (X—n+ 1)2«2‘1 s(n,€)x"

for n=1. It is known thats(n,€)(—1)"" ¢ is the number of
elements in the sef, of all permutations of 1,2, ... n},

which are products off disjoint cycles. These numbers

s(n,¢) are calledthe Stirling numbers of the first kifd1].
For example, there are 36 distinct permutations of
{1,2,3}. We denote a permutation-1a,2—b,3—c simply
by [abc] (a,b,ce{1,2,3},a#b+#c). We regard 231] as a

cycle 1-2—3—1, [213] as a product of two cycles 1

—2—1 and 3-3, and the identity transformatigri 23] as
that of three cycles 4-1,2—2, and 3—3. In this example,
we sees(3,1)=2 (for there are two elemeni231] and
[312] with €=1 in S3), s(3,3)=1 ([123]) ands(3,2)=

— 3 (other three permutatiops-or convenience, we will as-

sume here thag(n,€)=0 if n<0, or{<0 orn<¢{. Then
we have expressiofl9) from Eq. (25) with the coefficients

k

~ 2k)! —1)m-famri-t
8g,m(k):u ( )

2 1 % DI —m
(27)

It is easy to confirm thats(n,1)=(—1)""}(n—1)!,
s(n,n—1)=-n(n—1)/2, and s(n,n)=1 for any n
=1,2,3 ..., and numerical tables ofs(n,{) are found
in Ref. [41]. For example, if we sek=2, Eq.(27) gives
£11(2)=4s(1,1)5(2,2)=4, 142)=5(2,2)s(1,1)=1,
£21(2)=6{s(1,1)s(1,1)+2s(1,1)s(2,1)/3 =2, ande, A2)
=—25(2,1)s(1,1)=2, and havingey(2)=2,.(2)=1, re-
sult (15) is again obtained through the general form(28)
with Egs. (18) and(19).

Xs(m,€)s(j—m+1k—g—€+2).

V. CONCLUDING REMARKS

In the present paper, we performed the graphical expan-
sions for the moments of the positions of vicious walkers.

The obtained formuld20) with Egs. (18) and (19) can be

. C2 k
MN,T(t,k>=(7) N e q(k), (28)
that is, only the contribution from the genus-zero orientable
surfaces will survive in the limiN—-ce. It is well known that
go(k)’s are given by the Catalan numbety (see, for ex-
ample, Ref[42]),

2k>

k

1

So(k)zckzm

(29

and their generating function is
1 oo
a(f)=5{1-2¢-\1-44=2, &C. (30

Corresponding to Eq28), define the density functiop(t,x)
as

My r(t,k)= f x?p(t,x)dx.

Multiplying both sides byz¥ and taking the summation over
k from 0 to, we will have

p(t,x)
1—2zx2

where Eqgs.(28)—(30) were used. If we sez=1/2c?N, it

becomes
p(t,x
2N—(x/c)?
This integral equation can be solved[26)]

1
%\/ZN—(x/c)z if |x|<v2Nc,

0 otherwise.

dx,

%[1—\/1—202Nz]=f
c°z

p(t,x)=

In the largeN limit, the density function will keep a semi-
circle shape independently of the time evolution, in which
only the width of the semicircle depends on time and simply
scaled byc [32]. In other wordsWigner's semicircle laws
universal inN—oo.

The universal property of random matrix theory at the
large N limit and its finiteN corrections have been studied
by calculating the Green functions in the form oNléxpan-
sions in the field theorj21-23,43. In order to compare our
present results with the previous ones, here we consider the
one-point Green function defined by

]

(31)

Z|l -

Noog
GN,T(trZ):< le =

051110-7
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with &;=X; /(:/Nc) for ze C. Itis nothing but the generating previous results of N expansions for the GUE and GOE as

function of momentg1), the special cases with=0 and 1, respectively.
’ Our formula also gives a power series in with
1 < N-dependent coefficients. Let  M(k;y,N)
Cnrt2)= 17 & | N2 Merth): — My 1(t,K)/(c%/2)¥. Then

We define the coefficients!{"(t,k) in the expansion of the K

moment as m(k;%N)Ingo Y™ em(N),

C2 k * 1 __
MN,T(tak):(E) NanZO WM(TH)(LK)- (32 wheref, (N) are the polynomials of degrdet 1 in N for
- m=0 and of degre& in N for 1<m=k. Explicit expression
of fi m(N) is immediately obtained from Ed25). We re-

Then we have the I expansion of the Green function as mark that the coefficients of the highest ordeninf, (N,

= are equal to theonal polynomials g(s,S,, - - . Sy, if we
Gn1(t,2)= > —6{"(t,2), (33)  setall the variables;=s,= - - - =s, =N [44].
n=0 N" As shown by Eq(4) with Eq. (5), the present system of

vicious walkers can be regarded as a Gaussian matrix model,
where and thus exactly solvable as demonstrated in this paper. We
would like to state, however, that the probability densgy
of the positions of walkers is not in the simple Gaussian
form multiplied by hy(x), when 0<t<T, due to the factor
Nu(T—t,x). Combination of the Pfaffian representation of

Since we have obtained the closed expressions for any mdbis factor given in Refs[16,17 and the facts that PA)
ments, Eq(20) with Egs. (24) and (25), the Green function = (detA)"? for any even-dimensional antisymmetric matrix
(31) is completely determined, and the coefficie6®)(t,z) A and deA=e""%, Eq.(2) is written for everN as

in its 1N expansion(33) can be derived for any order

through formulas(18) and (19) with the known result of pn.t(tX)xhy(x)exd — V(x)],

g4(k) [25] and Eq.(27). For example, as shown in Appendix

B, the present results give the following expressions for the . . .
first three terms: with the nonharmonic potential

k

M{V(t,k). (34)

15 (1
ePta=7 2, (7

1+a 2
GPt,2)= Z(s“)' (35) V(x)=—%+%tr[ln F(T—t,%)],

GW(t,z)=2z a(d) va(d) (36) where F(s,X) is the NXN antisymmetric matrix with the
T 1-a(¢)? 1—va())’ element Fik(s,x)=(2/\/;)erf[(xk—xj)/2\/§] with erf(u)
=[sdue . Then the present results fo@<T are non-

and trivial.
) In summary, we demonstrated the GUE-to-GOE transition
GOt 71— &1 N {o 1 in time for the vicious walk model by presenting the graphi-
T(t2)= 32 922 1—-a(¢)? 629 1—a(¢)? cal expansion formula of the moments of walker’s positions.

The weights of contributing graphs are time developing and

1 9] a(f) [ d ] va({) our formula interpolates the genus expansion of orientable
Frr] Bt I v ¥ ey graphs for the GUE and that of nonorientable graphs for the
2 — 2 1- . .
zdgl1-a(0) 7Y va(d) GOE by using a time parameter=t/(2T—t). The formula
1 a0 J a(?) provides a power series in the number of walkirand it
- _( y—— ]7— (37)  was shown that the exact expression of dynamical correla-
2z{ 1-a({)? dy 1-va({) tion functions recently reported by Nagabal.[32] is very

useful in order to evaluate the coefficients in the series. By
with {=1/(2z%). By using Eq/(30), we can show that setting comparing with the previous results oNLexpansion of the
y=1 reduces them to Eq$24), (26), and (28) with B=1  one-point Green function, we showed that our results are
(the GOE casegiven by Itoi, respectively, who derived them general and valid. Further applications of the quaternion de-
by solving the loop equationt3]. On the other hand, we terminantal expressions of dynamical correlations of vicious
can confirm that, if we sey=0, G{"(t,z/\2)/\2 gives the  walkers to the graphical expansions of more general types of
B=2 (GUE) results of Itoi. Some details are given in Ap- moments(e.g., correlators of moments at different times
pendix B. Our result is general, and it will reproduce all the[45]) will be interesting future problems.
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APPENDIX A: DENSITY FUNCTION

Let H;(x) be thejth Hermite polynomial defined in Sec.

IV. We can read the density functig@l) from Refs.[32,3§
by settingM=1 as

N/2—1
p(t)= 2 —[P2(0Ror4100 = Por1(ORe(X)],
(A1)
where
¢
Re(x)= y"’ZE agHj(xIc)y 17, (A2)
p(y,2)  p(x,2)
d,(x =j d dzdZ ,
€( ) ny(y) mezeg <o p(y,Z') p(X,Z’)
2 c 4¢+1
re=— VZHM( 5) ¢, (A3)
with
;= (C12)%" 8¢,
a2€+lj:(C/2)2€+1(52€+1j_4652671]')1
and

e x2/2t e~ (x=y) 212(T—t)

p(x,y)=m N

The function p(x,y) can be expanded using the Hermite

polynomials as

e (x/c)zey2/2T

YT =xie)?

X,y)= ———=exX

PN a0 Ty
e—(x/c)ze—yzm ® iR
lezo pHiOdoH H;(y/\T).

Then, for¢=0,1,2 ..., wewill have

(i—20)12

Bj2eHj(x/c),
(A4)

e _
®2€+1(X):_§e

where g;,’s satisfy the relation

i
Z ﬂjgags s 0$S$J

Substituting Eqs(A2)—(A4) into Eq. (A1) gives Eq.(23).

It should be noted that, though thé= 1 case of Ref{32]
is equivalent to the Pandey-Mehta two-matrix mofEd],
the present expressiai23) is more useful for the moment
calculation as shown in Sec. IV.

APPENDIX B: COEFFICIENTS IN 1 /N EXPANSION
OF THE GREEN FUNCTION

By definition of M{"(t,k) in Egs.(32), (18), and(19), we
have

MO(t,k) = £q(k)=Cy, (B1)

k

MP(t,k)= 21 E1m(K)y"= m;

2k

m
keml Y (B2

_ ‘L 1 (2k)!
MP(tR=e1(k)+ 2 Z2m(K) ym=1—2k!§k—_2)!

2k .
+
m=1 k+m ( 1)

+% > [(Zm—l)

2k
—(3m—1) Kt

(B3)

where we have used EqR7) and(29), and the fact (k)
=(2k)!/[12k!(k—2)!], which is obtained from EQq(26)
with Eq. (29). Through Eqgs(30) and (34), Eq. (B1) imme-
diately gives Eq(35). In order to derive Eq936) and(37)
from Egs.(B2) and(B3), respectively, we can use the iden-
tity given as Eq.{C5) in Ref.[46],

o

>

n=1

a( g)m+l

n+i_
‘ 1-a(9)?

for m=0,

n+m

and its derivatives with respect to It is easy to see that

051110-9
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G"(t,z)=z— 7?2,

andG{V(t,2) is zero aty=0. Moreover, we have obtained
the following expressions for€1— y<1:

1 1 z
(Wt 7)== - - -
T3 2 22 2z oY
+0((1-»)?),

PHYSICAL REVIEW E 67, 051110(2003

27%+3—22\7%-2

G-(I—Z)(t'z) = 4(22_ 2)5/2
B 2(Z%+6)— (2 +1)VZ2-2
4(z*-2)°

X(1-y)+0((1-y)?,

and

GP(t,z)= : at y=0.
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