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Moments of vicious walkers and Möbius graph expansions

Makoto Katori* and Naoaki Komatsuda†

Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japa
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A system of Brownian motions in one dimension all started from the origin and conditioned never to collide
with each other in a given finite time interval (0,T# is studied. The spatial distribution of such vicious walkers
can be described by using the repulsive eigenvalue statistics of random Hermitian matrices and it was shown
that the present vicious walker model exhibits a transition from the Gaussian unitary ensemble~GUE! statistics
to the Gaussian orthogonal ensemble~GOE! statistics as the timet goes on from 0 toT. In the present paper,
we characterize this GUE-to-GOE transition by presenting the graphical expansion formula for the moments of
positions of vicious walkers. In the GUE limitt→0, only the ribbon graphs contribute and the problem is
reduced to the classification of orientable surfaces by genus. Following the time evolution of the vicious
walkers, however, the graphs with twisted ribbons, called Mo¨bius graphs, increase their contribution to our
expansion formula, and we have to deal with the topology of nonorientable surfaces. Application of the recent
exact result of dynamical correlation functions yields closed expressions for the coefficients in the Mo¨bius
expansion using the Stirling numbers of the first kind.
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I. INTRODUCTION

The statistics of a set of one-dimensional random wa
conditioned never to collidein a given time interval, sayT,
has its own importance in statistical physics, since, if we
T→`, it realizes the one-dimensional Fermi statistics@1#,
and withT,` it is used to analyze the models for wettin
and melting phenomena@2#. We will refer to such noncollid-
ing random walks and the continuum counterpart, noncol
ing Brownian motions, simply asvicious walksfollowing the
terminology used by Fisher@2#. For the pioneering work on
vicious walker models, see Refs.@3–7#. A generic setting of
vicious walk problems is discussed in Ref.@8#. Recently the
interest on the vicious walks in mathematical physics is
newed and growing very rapidly, for close relationships
the vicious walk problem with the study of ensembles
Young tableaux and the symmetric functions@9–11#, the
theories of orthogonal polynomials and random matri
@12,13#, and some topics of representation theory and pr
ability theory @14–16# have been clarified.

In an earlier paper@17#, the continuum limit of noncollid-
ing random walks on a lattice was taken by letting the te
poral and spatial unitsDt,Dx go to zero with the relation
Dt}(Dx)2 and a system of noncolliding Brownian motion
was derived. Since each random walk tends to be a Brow
motion in thisdiffusion scaling limit, such a construction o
noncolliding Brownian motion is plausible, and indeed ma
ematical rigor can be established as a functional central l
theorem of vicious walks@16#. The important fact is that the
repulsive interaction among the obtained Brownian partic
is no longer contact interaction as in the original vicio
random walks on a lattice but is long ranged. The origin
this long-ranged interaction is the restriction of allowed co
figurations by the noncolliding condition, so that we can s
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it is an example of entropy-origin effective force. Moreove
the following setting was considered in our vicious walks:~i!
even after taking the continuum limit, still we let the tim
interval, in which the noncolliding condition is imposed, b
finite T,`, and~ii ! all the Brownian particles are assume
to start from an origin and the time interval of noncolliding
(0,T#.

In this setting, the process is temporally inhomogeneo
At the very early staget!T the repulsive interaction shoul
be strong, since the Brownian motions will be restricted
that they will not collide for a long time period up to timeT
in the future. As the timet goes on, the strength of the re
pulsion is decreasing as is the remaining time untilT, and
attains its minimum at the final timet5T, at which there
is no more restriction of motion in the futuret.T. It was
Dyson’s idea that such systems of Brownian motions w
long-ranged repulsion could have the equilibrium stat
which can be described by the distribution functions of t
eigenvalues of random matrices in the ensembles appro
ately specified by the symmetry of the system@18#. The pre-
vious paper@17# showed that the spatial distribution of v
cious walkers att!T realizes the eigenvalue statistics of th
Gaussian unitary ensemble~GUE!, one att5T does that of
the Gaussian orthogonal ensemble~GOE!, and the GUE-to-
GOE transition is observed in the intermediate time, which
equivalent to the transition studied in the two-matrix mod
by Pandey and Mehta@19,20#.

In the present paper, we will characterize this transition
distribution by calculating the moments of the positions ofN
particles as functions of timet,

MN,T~ t,k!5K (
j 51

N

xj
2kL

t

, k51,2,3, . . . , ~1!

where xj denotes the position ofj th vicious walker and
^•& t the average at timetP(0,T#. In addition to such an
interest of statistical physics, we can put emphasis that
©2003 The American Physical Society10-1
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present study possesses another importance as an inter
application of the graphical expansion theory. In high ene
physics, graphical expansions for the matrix models
SU(N) gauge theory were studied usingribbon graphsrep-
resenting propagators and it was shown that the domin
graphs for largeN are the planar ones and the leading c
rections come from the graphs embedded in a torus, wh
are depressed by a factor 1/N2 with respect to the plana
graphs@21,22#. On the other hand, it was clarified that in th
graphical expansion of SO(N) gauge theory the leading co
rections only are depressed by a factor 1/N for largeN with
respect to the dominant planar graphs, in which propaga
can be represented bytwisted ribbons@23,24#. In the gauge
theory, the presence of non-Gaussian interaction term
cubic or higher power is crucial and it leads totriangulations
of random surfaces. Although the Gaussian matrix mode
associated with the present vicious walker model are not
lated to the triangulation problem of random surfaces a
only give purely enumerative problems of surfaces,
proper structures of largeN expansions in SU(N) and SO(N)
gauge theories are also found in the GUE and GOE mod
respectively. We can show that, ifT→` in our vicious
walker model, the moments of the walker positions~1! can
be calculated by the graphical expansion method of the G
using the ribbon graphs and the results are given in the f
of power series in the inverse of thesquareof matrix sizeN,

MGUE~k!}Nk11(
g>0

«g~k!S 1

N2D g

.

Here the coefficients«g(k) are the numbers oforientable
surfaces of genus gmade from 2k-gon by some specified
procedure@25# ~see also Ref.@26# and Sec. 5.5 in Ref.@20#!.
On the other hand, for the GOE we have to take into acco
thenonorientable surfacesas well as the orientable ones an
the expansion is in the form of power series in 1/N. In other
words, in order to generate necessary surfaces, we nee
use twisted ribbons, whose type of graphs is now called
Möbius graphs @27,28#. For moments~1! of our vicious
walkers, we will perform the Mo¨bius graph expansion in th
present paper. Now the weights of the graphs are depen
on the timet; in the limit t→0 all the weights on the twisted
ribbons are zero, but they are growing as timet goes on, and
at t5T twisted ribbons are equally weighted as untwist
ones. This gives another characterization of the tempor
inhomogeneity of the process and the GUE-to-GOE tra
tion.

Quite recently Nagao, Tanemura, and one of the pre
authors applied the method of skew orthogonal polynom
and quaternion determinants developed for the multima
models@29–31# to the vicious walk problem and derived th
quaternion determinantal expressions for dynamical corr
tion functions@32#. Using this result, we will present an ex
pression of the coefficients in our expansion of mome
using the Stirling number of the first kind.

The paper is organized as follows. In Sec. II, we brie
review the previous results reported in Ref.@17# and give the
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precise definition of the moments which we will stud
Graphical representations are demonstrated in Sec. III.
application of the result of Ref.@32# is given in Sec. IV to
give the expression for the coefficients of expansion a
some concluding remarks are given in Sec. V. Appendixe
and B are prepared to derive the expression of the den
function used in Sec. IV and the 1/N expansions of the one
point Green function discussed in Sec. V, respectively.

II. VICIOUS WALKS AND THE MATRIX MODEL

We study a continuum model of vicious walks, the no
colliding Brownian motions in the time interval (0,T#, con-
structed in Refs.@16,17# as the diffusion scaling limit of
vicious random walks on a lattice. First we briefly review o
previous results. The configuration space of the presenN
vicious walkers isR,

N 5$x5(x1 ,x2 , . . . ,xN)PRN;x1,x2

,•••,xN%, whereR is a set of all real numbers. The prob
ability density of vicious walkers at timetP(0,T# with the
initial condition that all walkers start from the origin0 is
denoted byrN,T(t,x). It was given as

rN,T~ t,x!5Ce2uxu2/2thN~x!NN~T2t,x!, ~2!

with C522N/2TN(N21)/4t2N2/2/) j 51
N G( j /2) for xPR,

N ,
where G(z) is the gamma function,hN(x)5)1< j ,,<N(x,

2xj ) and

NN~s,x!5E
R,

N
dy det

1< j ,,<N
S 1

A2ps
e2(xj 2y,)/2sD .

By using the Harish-Chandra~Itzykson-Zuber! integral for-
mula @33–35#, we will see thatrN,T(t,x) is proportional to
the integral

hN~x!2E dUE dA exp@2trH~U†XU,A!#, ~3!

with

H~H,A!5
T

2t~T2t !
H22

T

t~T2t !
HA1

T2

2t2~T2t !
A2,

whereX is theN3N diagonal matrix withXj ,5xjd j , , and
the integrals*dU and *dA are taken over the groups ofN
3N unitary matrices$U% and real symmetric matrices$A%,
respectively. The proportional coefficient is determined
that the probability density is normalized. On the other ha
the integral overA in Eq. ~3! can be regarded as the conv
lution of the Gaussian distribution of complex Hermitian m
tricesH with variancet(12t/T) and that of real symmetric
matricesA with variancet2/T, and thus we have the expre
sion
0-2
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rN,T~ t,x!}hN~x!2E dUmN,T~ t,U†XU!, ~4!

with

mN,T~ t,H !}expS 2(
j ,,

H ~H j ,
R !2

2t
1

~H j ,
I !2

2t~12t/T!J D , ~5!

where and in the following we use the abbreviationszR and
zI for the real and the imaginary part of the complex num
z, respectively, i.e.,z5zR1 izI for zPC with i 5A21. Re-
mark that, if we set

c5At~2T2t !

T
~6!

and a2512t/T, cNmN,T(t,cH) is equal to the probability
density of the two-matrix model of Pandey and Mehta w
the parametera @19,20#. Corresponding to changing the p
rameter a from 1 to 0 in the Pandey-Mehta two-matr
model, a GUE-to-GOE transition occurs in the time develo
ment of particle distribution in our vicious walks.

Now we define the quantity, which we will study in th
present paper; the moment of particle positions in the vici
walks. Since distribution~2! of x is symmetric about the
origin 0, all of the odd moments vanish. The even mome
are defined and denoted as follows:

MN,T~ t,k!5K (
j 51

N

xj
2kL

t

5E
R,

N
dx(

j 51

N

xj
2krN,T~ t,x! ~7!

for k51,2, . . . .

III. GRAPHICAL EXPANSIONS

A. The Wick formula

First we notice that Eq.~4! is invariant under any permu
tation of x1 ,x2 , . . . ,xN . Then Eq.~7! is written as

MN,T~ t,k!}
1

N! ERN
dxhN~x!2E dU(

j 51

N

xj
2kmN,T~ t,U†XU!.

~8!

Next we introduce the integration measure for theN3N
complex Hermitian matrices,

dH5 )
1< j <,<N

dHj ,
R )

1< j ,,<N
dHj ,

I .
05111
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Since dH}dU3hN(x)2dx, if x5(x1 , . . . ,xN) are the ei-
genvalues ofH and dx5) j 51

N dxj ~e.g., see Ref.@20#!, and
( j 51

N xj
2k5trH2k for H5U†XU with any unitary matrixU,

Eq. ~8! with Eq. ~5! becomes

MN,T~ t,k!5^trH2k&, ~9!

where^ f &5*dH fmN,T(t,H) for functionsf of the elements
of H with

mN,T~ t,H !5)
j 51

N
e2(H j j

R)2/2t

A2pt
)

1< j ,,<N

e2(H j ,
R )2/t

Apt

3 )
1< j ,,<N

e2(H j ,
I )2/t(12t/T)

Apt~12t/T!
. ~10!

Note that

tr~H2k!5 (
j 1 , j 2 , . . . ,j 2k

H j 1 j 2
H j 2 j 3

•••H j 2k21 j 2k
H j 2kj 1

,

where the sum is taken over allN2k combinations of indices
j 1 , j 2 , . . . ,j 2k , and thatH j ,5H j ,

R 1 iH j ,
I with the Hermitian

conditionH, j
R 5H j ,

R ,H, j
I 52H j ,

I , the integrand trH2k in Eq.
~9! is a polynomial of theN2-independent random variable
$H j ,

R ;1< j <,<N%ø$H j ,
I ;1< j ,,<N%. Since probability

density~10! is a product of independent Gaussian integrat
kernels, we can apply the Wick formula with the variance

^~H j ,
R !2&5

t

2
~11d j ,!, ^H j ,

R H j ,
I &50,

^~H j ,
I !2&5

t~12t/T!

2
~12d j ,!, ~11!

for 1< j <,<N, whered j , is Kronecker’s delta.
We can readily prove that Eq.~11! is equivalent to

^H j ,Hmn&5
c2

2
~d jnd,m1gd jmd,n!, ~12!

wherec is given by Eq.~6! and

g5
t

2T2t
. ~13!

The Wick formula for Eq.~9! is thus
MN,T~ t,k!5 (
j 1 , j 2 , . . . ,j 2k

(
pPS2k :R

^H j p(1) j p(1)11
H j p(2) j p(2)11

&^H j p(3) j p(3)11
H j p(4) j p(4)11

&•••^H j p(2k21) j p(2k21)11
H j p(2k) j p(2k)11

&,

~14!
0-3
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with the identificationj 2k115 j 1, where the first sum is take
over allN2k combinations of indicesj 1 , j 2 , . . . ,j 2k , and the
second one over the set of permutationsS2k of $1,2, . . . ,2k%
with the restriction

R: p~1!,p~3!,•••,p~2k21!,

p~2 j 21!,p~2 j !, 1< j <k.

The total number of the terms in the second summation
(2k21)!!.

B. An example: The fourth moment

In this section, by performing calculation of the four
moment MN,T(t,2)5^trH4&, we will demonstrate how to
obtain graphical expansions from the Wick formula~14! with
variance ~12!. We start from the Wick formula for
MN,T(t,2),
la
in

ct
g

of

or

-

05111
is

MN,T~ t,2!5 (
j 1 , j 2 , j 3 , j 4

$^H j 1 j 2
H j 2 j 3

&^H j 3 j 4
H j 4 j 1

&

1^H j 1 j 2
H j 3 j 4

&^H j 2 j 3
H j 4 j 1

&1^H j 1 j 2
H j 4 j 1

&

3^H j 2 j 3
H j 3 j 4

&%,

which has (23221)!! 53 terms in the summand o
j 1 , . . . ,j 4. Substitution of Eq.~12! and binomial expansion
give the 3322512 terms in the form

MN,T~ t,2!5S c2

2 D 2

(
,51

12

L,,

with
L15 (
j 1 , j 2 , j 3 , j 4

d j 1 j 3
d j 2 j 2

d j 3 j 1
d j 4 j 4

, L25 (
j 1 , j 2 , j 3 , j 4

d j 1 j 3
d j 2 j 2

d j 3 j 4
d j 4 j 1

g,

L35 (
j 1 , j 2 , j 3 , j 4

d j 1 j 2
d j 2 j 3

d j 3 j 1
d j 4 j 4

g, L45 (
j 1 , j 2 , j 3 , j 4

d j 1 j 2
d j 2 j 3

d j 3 j 4
d j 4 j 1

g2,

L55 (
j 1 , j 2 , j 3 , j 4

d j 1 j 4
d j 2 j 3

d j 2 j 1
d j 3 j 4

, L65 (
j 1 , j 2 , j 3 , j 4

d j 1 j 4
d j 2 j 3

d j 2 j 4
d j 3 j 1

g,

L75 (
j 1 , j 2 , j 3 , j 4

d j 1 j 3
d j 2 j 4

d j 2 j 1
d j 3 j 4

g, L85 (
j 1 , j 2 , j 3 , j 4

d j 1 j 3
d j 2 j 4

d j 2 j 4
d j 3 j 1

g2,

L95 (
j 1 , j 2 , j 3 , j 4

d j 1 j 1
d j 2 j 4

d j 2 j 4
d j 3 j 3

, L105 (
j 1 , j 2 , j 3 , j 4

d j 1 j 1
d j 2 j 4

d j 2 j 3
d j 3 j 4

g,

L115 (
j 1 , j 2 , j 3 , j 4

d j 1 j 4
d j 2 j 1

d j 2 j 4
d j 3 j 3

g, L125 (
j 1 , j 2 , j 3 , j 4

d j 1 j 4
d j 2 j 1

d j 2 j 3
d j 3 j 4

g2.
ll

iva-
Graphically, we prepare a square with four vertices
beledj 1 , j 2 , j 3 , j 4 in a cyclic order for each term as shown
Fig. 1 and connect the verticesj a and j b by a line for each
Kronecker’s deltad j aj b

. We then regard these lines conne
ing vertices as the hems of ribbons connecting the two ed
of the square. For example, the two lines connectingj 1↔ j 3
and j 2↔ j 2 in the termL2 are considered as the two hems
a ribbon, sayr 1, connecting the edgesj 1 j 2 and j 2 j 3 of the
square, while the linesj 3↔ j 4 and j 4↔ j 1 are as those of a
ribbon, sayr 2, connectingj 3 j 4 and j 4 j 1. There are two ways
to connect two distinct edges by a ribbon, by untwisting asr 1
and by twisting asr 2 in the above example, respectively. F
each twisted ribbon, we put a factorg.

Next we take the summation overj 1 , . . . ,j 4 in each term.
Again consider the termL2 for example. Under the restric
tions on indices specified by the Kronecker deltas,j 15 j 3
-

-
es

5j4, only two indices, sayj 1 and j 2, can be chosen to be
arbitrary from $1,2, . . . ,N%. Then the summation over a
possible choices of indices givesN2 for this term. The con-
tribution of L2 is thusN2g. We list up the contributions of
all terms in Fig. 1, and the sum of them gives

MN,T~ t,2!/~c2/2!2

5~N31N2g321Ng2!321N1Ng321N2g2

5N3H 21~4g1g2!
1

N
1~112g12g2!

1

N2J . ~15!

This shows that the 12 terms are classified into six equ
lence classes$L1 ,L9%, $L2 ,L3 ,L10,L11%, $L4 ,L12%, $L5%,
0-4
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$L6 ,L7%, and $L8% with respect to the contribution to th
moment, and Fig. 1 implies that all graphs for the terms in
equivalence class are topologically equivalent.

C. General formula

For the general 2kth moment,MN,T(t,k), k>1, we have
(2k21)!! Wick couplings in formula~14!, each term of
which is thek products of the varianceŝH j ,Hmn&. By ap-
plying Eq. ~12! and expanding ing, we will have theK
5(2k21)!! 32k terms, MN,T(t,k)/(c2/2)k5(,51

K L, . As
demonstrated in the above section, a one-to-one corres
dence is established between terms$L,% and graphs, each o
which consists of a 2k-gon with its edges connected byk
ribbons to each other. For each graph corresponding toL, ,
let w, be the number of twisted ribbons in thek ribbons and
V, be the ‘‘free indices’’ remaining after the identification o
indices under the Kronecker delta conditions. Then the c
tribution from the termL, is given byNV,gw,. As mentioned
at the end of the preceding section, we consider the equ
lence classes of the terms having the same contribution to
2kth moment, and let each equivalence class be represe
by a graphG. We letV(G) andw(G) be the numbers of free
indices and of twisted ribbons. Moreover, we denote
number of elements in the equivalence classG by uGu. In
other words,uGu is the number of ways to generate graph
which are topologically equivalent withG, using a 2k-gon
andk ribbons by gluing edges of 2k-gons by ribbons. Define
G(k) as the collection of all graphs$G% generated by the
present procedure. Then we have

MN,T~ t,k!5S c2

2 D k

(
GPG(k)

uGuNV(G)gw(G). ~16!

Each graphG having no twisted ribbons,w(G)50, de-
fines a way of drawing a graph on an orientable surfaceSG ,
called a map, and each map specifies the surfaceSG on
which the graph is drawn~see, for example, Refs.@26,36#!.
In general, the specified orientable surface has ‘‘holes’’
‘‘handles’’ and their number is called thegenus g(SG). The

FIG. 1. Möbius graphs for the fourth moment.
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genus is related toV(G), E(G)5k ~the number of distinct
edges; the original 2k sides of polygon were glued togethe
in pairs by ribbons!, and F(G)51 ~the number of faces!
through the Euler characteristic

x~SG![V~G!2k115222g~SG!. ~17!

Then the contribution from all graphs having no twisted r
bons is expressed as

MN,T
0 ~ t,k!5S c2

2 D k

(
GPG(k)

1$w(G)50%uGuNk1122g(SG)

5S c2

2 D k

Nk11(
g50

[k/2]

«g~k!S 1

N2D g

, ~18!

where 1$v% is the indicator;1$v%51 if the conditionv is
satisfied and 1$v%50 otherwise, and «g(k)
5(GPG(k)1$w(G)50,V(G)5k1122g%uGu.

In the similar way, the graphsG having twisted ribbons,
w(G)>1, are considered to define nonorientable surfa
SG . The genusg for nonorientable surface may be defined
the Euler characteristics as@37#

x~SG!522g~SG!

instead of Eq.~17!. Then all the contribution to the momen
from such nonorientable surface graphs is

MN,T
1 ~ t,k!5S c2

2 D k

(
GPG(k)

1$w(G)>1%uGuNk112g(SG)gw(G)

5S c2

2 D k

Nk11(
g51

k S 1

ND g

(
m51

k

«̃g,m~k!gm, ~19!

where «̃g,m(k)5(GPG(k)1$w(G)5m,V(G)5k112g%uGu. Moment
~16! is then given by the summation

MN,T~ t,k!5MN,T
0 ~ t,k!1MN,T

1 ~ t,k!. ~20!

It should be noted thatg defined by Eq.~13! is a mono-
tonically increasing function oft and changes its value from
g50 to 1 as the time passes fromt50 to T. The above
formula ~19! shows the fact that the contribution from Mo¨-
bius graphs with twisted ribbons is growing in time and
t5T twisted ribbons contribute with the same weights
untwisted ribbons~the GOE case!.

IV. CALCULATION BY DENSITY FUNCTION

Set

rN,T~ t,x;T,y!5
C

~N! !2
e2uxu2/2thN~x!sgn@hN~y!#

3 det
1< j ,k<N

S e2(xj 2yk)2/2(T2t)

A2p~T2t !
D

0-5
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for x,yPRN. It is easy to confirm thatrN,T(t,x;T,y) is in-
variant under any permutation ofx1 , . . . ,xN and that of
y1 , . . . ,yN , and Eq.~2! is equal toN!*dyrN,T(t,x;T,y), if
xPR,

N . Then the density function at timet is defined as

r~ t,x!5NE )
j 52

N

dxjE dyrN,T~ t,x;T,y!, ~21!

and the 2kth moment is given by

MN,T~ t,k!5E x2kr~ t,x!dx. ~22!

Let H j (x) be the j th Hermitian polynomial, satisfying the
orthogonality *e2x2

H j (x)H,(x)dx5hjd j , with hj
or

05111
52j j!Ap. As shown in Appendix A, the general formula fo
the dynamical correlation functions of vicious walks report
in Refs.@32,38# gives the expression

r~ t,x!5
1

c
e2(x/c)2

(
j 50

N21
1

hj
$H j~x/c!%2

1
g

2N21cAp
e2(x/c)2

HN21~x/c!
1

~N/221!!

3(
j 50

`
~N/21 j !!

~N12 j 11!!
g jHN12 j 11~x/c!. ~23!

Substituting Eq.~23! into Eq. ~22! and replacing the integra
variablex by y5x/c give
MN,T~ t,k!/c2k5 (
j 51

N21
1

hj
E y2k$H j~y!%2e2y2

dy1
g

2N21Ap~N/221!!
(
j 50

`
~N/21 j !!

~N12 j 11!!
g jE y2kHN21~y!HN12 j 11~y!e2y2

dy

5
1

22k1NAp~N21!!
(
j 50

k
~2k!!

j ! ~2k22 j !! F E H2k22 j~y!$HN~y!%2e2y2
dy

2E H2k22 j~y!HN21~y!HN11~y!e2y2
dyG1 g

22k1N21Ap~N/221!!
(
j 50

`
~N/21 j !!

~N12 j 11!!
g j

3 (
,50

k
~2k!!

,! ~2k22, !! E H2k22,~y!HN21~y!HN12 j 11~y!e2y2
dy.
r-
In the second equality, we used the Christoffel-Darboux f
mula ~see p. 193 in Ref.@39#!

(
j 50

N21
1

hj
$H j~y!%25

1

2NAp~N21!!
@$HN~y!%2

2HN21~y!HN11~y!#,
-and the relation

~2y!2k5(
j 50

k
~2k!!

j ! ~2k22 j !!
H2k22 j~y!.

Now we apply the integration formula for the triple of He
mitian polynomials~see p. 290 in Ref.@40#!:
E H j~y!H,~y!Hm~y!e2y2
dy5H j ! ,!m!

~s2 j !! ~s2, !! ~s2m!!
2sAp if j 1,1m52s is even

and s2 j >0, s2,>0, s2m>0,

0 otherwise.

Then we arrive atMN,T(t,k)5MN,T
0 (t,k)1MN,T

1 (t,k), with

MN,T
0 ~ t,k!5S c2

2 D k~2k!!

2kk!
(
j 50

k S k

j D S N

k2 j 11D 2k2 j , ~24!

MN,T
1 ~ t,k!5S c2

2 D k

(
j 50

k21

(
,50

k2 j 21
2,2 j~N/21, !!N! ~2k!!

~N/2!! ~N1,2k1 j !! ~k2 j 2,21!! ~k2 j 1,11!! j !
g,11. ~25!
0-6
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Here we do not repeat the explanation how to characte
the quantity«g(k) in Eq. ~18! by using formula~24!, and
only mention that it is obtained as the solution of the rec
rence relation

~k11!«g~k!5~4k22!«g~k21!

1~k21!~2k21!~2k23!«g21~k22!,

~26!

with the boundary conditions

«g~0!5H 1 if g50,

0 otherwise.

See Ref.@25#, Sec. 5.5 in Ref.@20#, and Ref.@26# for details.
In order to express the expansion in 1/N for Eq. ~25!, here

we introduce the numbers(n,k) defined as the coefficient
of the expansion

x~x21!•••~x2n11!5 (
,51

n

s~n,, !x,

for n>1. It is known thats(n,,)(21)n2, is the number of
elements in the setSn of all permutations of$1,2, . . . ,n%,
which are products of, disjoint cycles. These number
s(n,,) are calledthe Stirling numbers of the first kind@41#.
For example, there are 3!56 distinct permutations o
$1,2,3%. We denote a permutation 1→a,2→b,3→c simply
by @abc# (a,b,cP$1,2,3%,aÞbÞc). We regard@231# as a
cycle 1→2→3→1, @213# as a product of two cycles 1
→2→1 and 3→3, and the identity transformation@123# as
that of three cycles 1→1,2→2, and 3→3. In this example,
we sees(3,1)52 ~for there are two elements@231# and
@312# with ,51 in S3), s(3,3)51 (@123#) and s(3,2)5
23 ~other three permutations!. For convenience, we will as
sume here thats(n,,)50 if n<0, or ,<0 or n,,. Then
we have expression~19! from Eq. ~25! with the coefficients

«̃g,m~k!5
~2k!!

2k (
j 5k2g11

k

(
,

~21!m2,2m1 j 2,

~k2 j !! ~ j 2m!! ~ j 1m!!

3s~m,, !s~ j 2m11,k2g2,12!. ~27!

It is easy to confirm thats(n,1)5(21)n21(n21)!,
s(n,n21)52n(n21)/2, and s(n,n)51 for any n
51,2,3, . . . , and numerical tables ofs(n,,) are found
in Ref. @41#. For example, if we setk52, Eq. ~27! gives
«̃1,1(2)54s(1,1)s(2,2)54, «̃1,2(2)5s(2,2)s(1,1)51,
«̃2,1(2)56$s(1,1)s(1,1)12s(1,1)s(2,1)/3%52, and «̃2,2(2)
522s(2,1)s(1,1)52, and having«0(2)52,«1(2)51, re-
sult ~15! is again obtained through the general formula~20!
with Eqs.~18! and ~19!.

V. CONCLUDING REMARKS

In the present paper, we performed the graphical exp
sions for the moments of the positions of vicious walke
The obtained formula~20! with Eqs. ~18! and ~19! can be
05111
e

-

n-
.

regarded as the power series of the number of walkersN.
Here we consider the largeN limit. Let M̂N,T(t,k) be the
dominant term of Eq.~20! in N@1. Then

M̂N,T~ t,k!5S c2

2 D k

Nk11«0~k!, ~28!

that is, only the contribution from the genus-zero orienta
surfaces will survive in the limitN→`. It is well known that
«0(k)’s are given by the Catalan numbersCk ~see, for ex-
ample, Ref.@42#!,

«0~k!5Ck5
1

k11 S 2k

k D , ~29!

and their generating function is

a~z!5
1

2z
$122z2A124z%5 (

k51

`

zkCk . ~30!

Corresponding to Eq.~28!, define the density functionr̂(t,x)
as

M̂N,T~ t,k!5E x2kr̂~ t,x!dx.

Multiplying both sides byzk and taking the summation ove
k from 0 to `, we will have

1

c2z
@12A122c2Nz#5E r̂~ t,x!

12zx2
dx,

where Eqs.~28!–~30! were used. If we setz51/2c2N, it
becomes

E r̂~ t,x!

2N2~x/c!2
dx51.

This integral equation can be solved as@20#

r̂~ t,x!5H 1

pc
A2N2~x/c!2 if uxu<A2Nc,

0 otherwise.

In the largeN limit, the density function will keep a semi
circle shape independently of the time evolution, in whi
only the width of the semicircle depends on time and sim
scaled byc @32#. In other words,Wigner’s semicircle lawis
universal inN→`.

The universal property of random matrix theory at t
large N limit and its finite-N corrections have been studie
by calculating the Green functions in the form of 1/N expan-
sions in the field theory@21–23,43#. In order to compare our
present results with the previous ones, here we consider
one-point Green function defined by

GN,T~ t,z!5K 1

N (
j 51

N
1

z2j j
L

t

, ~31!
0-7
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with j j5xj /(ANc) for zPC. It is nothing but the generating
function of moments~1!,

GN,T~ t,z!5
1

Nz (
k50

` S 1

Nc2z2D k

MN,T~ t,k!.

We define the coefficientsM̄T
(n)(t,k) in the expansion of the

moment as

MN,T~ t,k!5S c2

2 D k

Nk11(
n50

`
1

Nn
M̄T

(n)~ t,k!. ~32!

Then we have the 1/N expansion of the Green function as

GN,T~ t,z!5 (
n50

`
1

Nn
GT

(n)~ t,z!, ~33!

where

GT
(n)~ t,z!5

1

z (
k50

` S 1

2z2D k

M̄T
(n)~ t,k!. ~34!

Since we have obtained the closed expressions for any
ments, Eq.~20! with Eqs.~24! and ~25!, the Green function
~31! is completely determined, and the coefficientsGT

(n)(t,z)
in its 1/N expansion~33! can be derived for any ordern
through formulas~18! and ~19! with the known result of
«g(k) @25# and Eq.~27!. For example, as shown in Append
B, the present results give the following expressions for
first three terms:

GT
(0)~ t,z!5

11a~z!

z
, ~35!

GT
(1)~ t,z!52z

a~z!

12a~z!2

ga~z!

12ga~z!
, ~36!

and

GT
(2)~ t,z!5

z2

3z

]2

]z2

1

12a~z!2
1

z

6z

]

]z

1

12a~z!2

1
1

2z

]

]z F a~z!

12a~z!2 H 2g
]

]g
21J ga~z!

12ga~z!G
2

1

2zz

a~z!

12a~z!2 H 3g
]

]g
21J ga~z!

12ga~z!
, ~37!

with z51/(2z2). By using Eq.~30!, we can show that setting
g51 reduces them to Eqs.~24!, ~26!, and ~28! with b51
~the GOE case! given by Itoi, respectively, who derived them
by solving the loop equations@43#. On the other hand, we
can confirm that, if we setg50, GT

(n)(t,z/A2)/A2 gives the
b52 ~GUE! results of Itoi. Some details are given in Ap
pendix B. Our result is general, and it will reproduce all t
05111
o-

e

previous results of 1/N expansions for the GUE and GOE a
the special cases withg50 and 1, respectively.

Our formula also gives a power series ing with
N-dependent coefficients. Let M̃ (k;g,N)
5MN,T(t,k)/(c2/2)k. Then

M̃ ~k;g,N!5 (
m50

k

gmf k,m~N!,

where f k,m(N) are the polynomials of degreek11 in N for
m50 and of degreek in N for 1<m<k. Explicit expression
of f k,m(N) is immediately obtained from Eq.~25!. We re-
mark that the coefficients of the highest order ing, f k,k(N),
are equal to thezonal polynomials Z(k)(s1 ,s2 , . . . ,sk), if we
set all the variabless15s25•••5sk5N @44#.

As shown by Eq.~4! with Eq. ~5!, the present system o
vicious walkers can be regarded as a Gaussian matrix mo
and thus exactly solvable as demonstrated in this paper.
would like to state, however, that the probability density~2!
of the positions of walkersx is not in the simple Gaussia
form multiplied byhN(x), when 0,t,T, due to the factor
NN(T2t,x). Combination of the Pfaffian representation
this factor given in Refs.@16,17# and the facts that Pf(A)
5(detA)1/2 for any even-dimensional antisymmetric matr
A and detA5etr ln A, Eq. ~2! is written for evenN as

rN,T~ t,x!}hN~x!exp@2V~x!#,

with the nonharmonic potential

V~x!52
uxu2

2t
1

1

2
tr@ ln F~T2t,x!#,

where F(s,x) is the N3N antisymmetric matrix with the
element F jk(s,x)5(2/Ap)erf@(xk2xj )/2As# with erf(u)
5*0

xdue2u2
. Then the present results for 0,t,T are non-

trivial.
In summary, we demonstrated the GUE-to-GOE transit

in time for the vicious walk model by presenting the grap
cal expansion formula of the moments of walker’s positio
The weights of contributing graphs are time developing a
our formula interpolates the genus expansion of orienta
graphs for the GUE and that of nonorientable graphs for
GOE by using a time parameterg5t/(2T2t). The formula
provides a power series in the number of walkersN and it
was shown that the exact expression of dynamical corr
tion functions recently reported by Nagaoet al. @32# is very
useful in order to evaluate the coefficients in the series.
comparing with the previous results of 1/N expansion of the
one-point Green function, we showed that our results
general and valid. Further applications of the quaternion
terminantal expressions of dynamical correlations of vicio
walkers to the graphical expansions of more general type
moments ~e.g., correlators of moments at different tim
@45#! will be interesting future problems.
0-8
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APPENDIX A: DENSITY FUNCTION

Let H j (x) be thej th Hermite polynomial defined in Sec
IV. We can read the density function~21! from Refs.@32,38#
by settingM51 as

r~ t,x!5 (
,50

N/221
1

r ,
@F2,~x!R2,11~x!2F2,11~x!R2,~x!#,

~A1!

where

R,~x!5g,/2(
j 50

,

a, jH j~x/c!g2 j /2, ~A2!

F,~x!5E dyR,~y!E
2`,z,z8,`

dzdz8U p~y,z! p~x,z!

p~y,z8! p~x,z8!
U,

r ,5
2

p
g2,11/2S c

2D 4,11

h2, , ~A3!

with

a2, j5~c/2!2,d2, j ,

a2,11 j5~c/2!2,11~d2,11 j24,d2,21 j !,

and

p~x,y!5
e2x2/2t

A2pt

e2(x2y)2/2(T2t)

A2p~T2t !
.

The function p(x,y) can be expanded using the Herm
polynomials as

p~x,y!5
e2(x/c)2

ey2/2T

A2ptA2p~T2t !
expH 2

~y/AT2Agx/c!2

12g J
5

e2(x/c)2
e2y2/2T

A2ptA2T2t
(
j 50

`
g j /2

hj
H j~x/c!H j~y/AT!.

Then, for,50,1,2, . . . , wewill have
05111
g
k T.

F2,~x!5
r ,

c2
e2(x/c)2

(
j >2,11

g$ j 2(2,11)%/2

hj
b j 2,11H j~x/c!,

F2,11~x!52
r ,

c2
e2(x/c)2

(
j >2,

g ( j 22,)/2

hj
b j 2,H j~x/c!,

~A4!

whereb j ,’s satisfy the relation

(
,5s

j

b j ,a,s5d js , 0<s< j .

Substituting Eqs.~A2!–~A4! into Eq. ~A1! gives Eq.~23!.
It should be noted that, though theM51 case of Ref.@32#

is equivalent to the Pandey-Mehta two-matrix model@19#,
the present expression~23! is more useful for the momen
calculation as shown in Sec. IV.

APPENDIX B: COEFFICIENTS IN 1 ÕN EXPANSION
OF THE GREEN FUNCTION

By definition ofM̄T
(n)(t,k) in Eqs.~32!, ~18!, and~19!, we

have

M̄T
(0)~ t,k!5«0~k!5Ck , ~B1!

M̄T
(1)~ t,k!5 (

m51

k

«̃1,m~k!gm5 (
m>1

S 2k

k1mD gm, ~B2!

M̄T
(2)~ t,k!5«1~k!1 (

m51

k

«̃2,m~k!gm5
1

12

~2k!!

k! ~k22!!

1
1

2 (
m>1

H ~2m21!S 2k

k1mD ~k11!

2~3m21!S 2k

k1mD J , ~B3!

where we have used Eqs.~27! and ~29!, and the fact«1(k)
5(2k)!/ @12k!(k22)!#, which is obtained from Eq.~26!
with Eq. ~29!. Through Eqs.~30! and ~34!, Eq. ~B1! imme-
diately gives Eq.~35!. In order to derive Eqs.~36! and ~37!
from Eqs.~B2! and ~B3!, respectively, we can use the ide
tity given as Eq.~C5! in Ref. @46#,

(
n51

` S 2n

n1mD zn115
a~z!m11

12a~z!2
for m>0,

and its derivatives with respect toz. It is easy to see that
0-9



d

M. KATORI AND N. KOMATSUDA PHYSICAL REVIEW E 67, 051110 ~2003!
GT
(0)~ t,z!5z2Az222,

andGT
(1)(t,z) is zero atg50. Moreover, we have obtaine

the following expressions for 0<12g!1:

GT
(1)~ t,z!52

1

2 F 1

Az222
2

z

z222
G2

1

2~z222!3/2
~12g!

1O„~12g!2
…,
. A

. A

tat

n

05111
GT
(2)~ t,z!5

2z21322zAz222

4~z222!5/2

2
z~z216!2~z211!Az222

4~z222!3

3~12g!1O„~12g!2
…,

and

GT
(2)~ t,z!5

1

4~z222!5/2
at g50.
y
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